A Decomposition of Complex Monge-Ampère Measures

نویسنده

  • Yang Xing
چکیده

We prove one decomposition theorem of complex Monge-Ampère measures of plurisubharmonic functions in connection with their pluripolar sets. 2000 Mathematics Subject Classification. Primary 32W20, 32U15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Solution of the Complex Monge-Ampère Equation in a space of arbitrary dimension

A general solution to the Complex Monge-Ampère equation in a space of arbitrary dimensions is constructed.

متن کامل

The General Solution of the Complex Monge-Ampère Equation in two dimensional space

The general solution to the Complex Monge-Ampère equation in a two dimensional space is constructed.

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

Monge-ampère Measures for Convex Bodies and Bernstein-markov Type Inequalities

We use geometric methods to calculate a formula for the complex Monge-Ampère measure (ddVK) n, for K Rn ⊂ Cn a convex body and VK its Siciak-Zaharjuta extremal function. Bedford and Taylor had computed this for symmetric convex bodies K. We apply this to show that two methods for deriving Bernstein-Markov type inequalities, i.e., pointwise estimates of gradients of polynomials, yield the same r...

متن کامل

On geometric characterizations for Monge–Ampère doubling measures

In this article we prove a theorem on the size of the image of sections of a convex function under its normal mapping when the sections satisfy a geometric property. We apply this result to get new geometric characterizations for Monge–Ampère doubling measures.  2002 Elsevier Science (USA). All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007